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Abstract

Let G be a group. The groups G
′

for which G is an automorphism
group have not been fully characterized. Suppose R is a Completely
Primary finite Ring with Jacobson Radical J such that J2 = (0). In
this case, the characteristic of R is p or p2 and the group of units R∗ =
Zpr−1×(I+J) . The structure ofR∗ is well known, but its automorphism
group is not well documented. Given the group R∗, let Aut(R∗) denote
the group of isomorphisms φ : R∗ → R∗ with multiplication given by the
composition of functions. The structure of the automorphism groups of
finite groups is intimately connected to the structure of the finite groups
themselves. In this note, we determine the structure of Aut(R∗) using
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well known procedures and to this end, extend the results previously
obtained in this area of research.

Mathematics Subject Classification: Primary 20K30; Secondary 16P10.
Keywords: Automorphism Groups, Unit Groups, Square Radical Zero

Completely Primary Rings.

1 Introduction

The definition of terms and standard notations can be obtained from [1, 3, 4, 6].
The classification of finite rings has been studied with great success in the re-
cent past ([1, 3, 6] and related studies). Most of the researchers have concen-
trated in obtaining the structures of the unit groups of Completely Primary
Finite Rings. However, the automorphisms of these unit groups have remained
uncharacterized. The first general structure result for the automorphisms
group of a finite group follows from a classical result of Gauss in number
theory. Let Zn denote the additive group of integers mod n and U(Zn) the
multiplicative group of integers mod n. Gauss analyzed the orders of elements
in U(Zpn) for p prime. His results can be summarized as follows:

Theorem 1.1. (Gauss) Let p be an odd prime and n ≥ 1 or p = 2 and n ≥ 2.
Then

U(Zpn) ∼= Zpn−1(p−1), U(Z2n) ∼= Z2 × Z2n−2

Notice that U(Zn) is precisely the set of generators of Zn. Since any auto-
morphism θ ∈ Zn sends 1 to a generator, the valuation map E : Aut(Zn) 7→
U(Zpn) given by E(θ) = E(1) is an isomorphism of groups. This sets the stage
for prime factorization of the integer n and consequently the classification of
the automorphisms of an arbitrary finite abelian group. On the other hand,
the automorphisms of cyclic groups are precisely known. In fact, given any
prime p and any integer n, the group Aut(Cn

p ) ∼= Aut(Znp ), the group of n by
n invertible matrices over the field Zp. These and related matrix groups play
important roles in the classification of simple groups.

In [6], the authors have constructed a class of Square Radical Zero Com-
mutative Completely Primary finite Rings as follows:

Let Ro be the Galois ring of the form GR(pkr, pk), such that k = 1, 2. For
each i = 1, ..., h, let ui ∈ J(R), such that U is an h− dimensional Ro−module
generated by {u1, ..., uh} so that R = R0 ⊕ U is an additive group. On this
group, define multiplication by the following relation

(*) pui = uiuj = ujui = 0, uiro = (ro)
σiui
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where ro ∈ Ro, 1 ≤ i, j ≤ h, p is a prime integer, n and r are positive integers
and σi is the automorphism associated with ui. Further, let the generators {ui}
for U satisfy the additional condition that, if ui ∈ U, then, pui = uiuj = 0.

From the given multiplication in R, we see that if r0 +
∑h

i=1 λiui and s0 +∑h
i=1 γiui, r0, s0 ∈ R0, λi, γi ∈ Fo are elements of R, then,

(ro +
h∑
i=1

λiui)(so +
h∑
i=1

γiui) = roso +
h∑
i=1

{(ro + pRo)γi + λi(so + pRo)
σi}ui

It is easy to verify that the given multiplication turns the additive abelian
group R, into a ring with identity (1, 0, ..., 0). Moreover, J2 = (0). Accord-
ingly, the characteristic of R is either p or p2. Furthermore, the group of units
R∗ of R is given by R∗ = Zpr−1 × (1 + J), a direct product of abelian groups.

In [4], Hillar and Rhea have given a useful description of the automorphism
group of an arbitrary finite abelian group and they found the size of this auto-
morphism group. We extend their work by characterizing Aut(R∗). We find
all the elements of GLhr(Zp) that can be extended to a matrix in End(Bp) and
calculate the distinct ways of extending such elements to the endomorphism.
The first complete characterization of the automorphism group of an abelian
group was however given by Ranum [2].

2 Preliminaries

Theorem 2.1. (cf. [6]) The unit group R∗ of the commutative completely
primary finite ring of characteristic p or p2 with maximal ideal J such that
J2 = (0) and with invariants p (prime integer), p ∈ J , r ≥ 1 and h ≥ 1 is a
direct product of cyclic groups as follows:

(i) If Char R = p,then
R∗ = Zpr−1 × (Zrp)h

(ii) If Char R = p2 then,

R∗ = Zpr−1 × Zrp × (Zrp)h.

The following Lemma is useful in the sequel

Lemma 2.2. (cf. [4]) Let H and K be finite groups of relatively prime orders.
Then, Aut(H)× Aut(K) ∼= Aut(H ×K)

Proposition 2.3. Let R∗ = Zpr−1 × 1 + J . Since g.c.d(pr − 1, | 1 + J |) = 1,
Aut(R∗) ∼= Aut(Zpr−1 × 1 + J) = Aut(Zpr−1)× Aut(1 + J)
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Proof. Let θ : Aut(Zpr−1) × Aut(1 + J) → Aut(Zpr−1 × 1 + J) be a ho-
momorphism. Suppose θ1 ∈ Aut(Zpr−1) and θ2 ∈ Aut(1 + J), then, it is
easy to see that an automorphism θ(θ1, θ2) of Zpr−1 × (1 + J) is given by
θ(θ1, θ2)(x, y) = (θ1(x), θ2(y))

Let id1 ∈ Aut(Zpr−1) and id2 ∈ Aut(1+J) be the identity automorphisms of
Zpr−1 and 1+J respectively. To show that, θ is indeed a homomorphism, notice
that θ(id1, id2) = Id(Zpr−1×1+J) and that, θ(θ1θ

′
1, θ2θ

′
2)(x, y) = (θ1θ

′
1(x), θ2θ

′
2(y))

= θ(θ1, θ2)θ(θ
′

1, θ
′

2)(x, y),∀θ1, θ
′

1 ∈ Aut(Zpr−1), θ2, θ
′

2 ∈ Aut(1 + J)

Next, we verify that θ is an isomorphism. Clearly, θ is injective. Thus, we
are left with showing surjectivity.
Let n = pr − 1 =| Zpr−1 | and m =| 1 + J | such that (n,m) = 1. Write φZpr−1

and φ1+J for the standard projection homomorphism φZpr−1
: Zpr−1× 1 + J →

Zpr−1 and φ1+J : Zpr−1× 1 + J → 1 + J . Fix θ
′ ∈ Aut(Zpr−1× 1 + J) and con-

sider the homomorphism α : 1 + J → Zpr−1 given by α(y) = φZpr−1
(θ
′
(id1, y)).

Notice that {yn : y ∈ 1 + J} ⊆ ker(α) since id1 = φZpr−1
(θ
′
(id1, y))n =

φZpr−1
(θ
′
(id1, y)n) = φZpr−1

(θ
′
(id1, y

n)) = α(yn)
Also, since (m,n) = 1, the set {yn : y ∈ 1 + J} consists of m elements.

Consequently, it follows that ker(α) = 1 + J and α is the trivial homomorph-
ism. Similarly, δ : Zpr−1 → 1 + J given by δ(x) = φ1+J(θ

′
(x, id2)) is trivial.

Finally, define endomorphisms of Zpr−1 and 1+J by; θ
′
(x) = φZpr−1

(θ
′
(x, id2)),

θ
′
1+J(y) = φ1+J(θ

′
(id1, y)). From this construction and the above argument, we

have θ
′
(x, y) = θ

′
(x, id2)·θ

′
(id1, y) = (θ

′

Zpr−1
(x), θ

′
1+J(y)) = (θ

′

Zpr−1
, θ
′
1+J(x, y))for

all x ∈ Zpr−1 and y ∈ 1 + J
It remains to prove that θ

′

Zpr−1
∈ Aut(Zpr−1) and θ

′
1+J ∈ Aut(1 + J) and

for this, it suffices that θ
′

Zpr−1
and θ

′
1+J are injective (since both n,m <∞)

Now, suppose that θ
′

Zpr−1
(x) = id1 for some x ∈ Zpr−1. Then, θ

′
(x, id2) =

(θ
′

Zpr−1
(x), θ

′
1+J(id2) = (id1, id2). So, x = id1 by injectivity of θ

′
. A similar

argument shows that θ
′
1+J ∈ Aut(1 + J) and this completes the proof.

Remark 2.4. From the Lemma and proposition above it is easy to see that
since the groups Zpr−1 and 1+J) are of relatively prime orders and Aut(Zpr−1) ∼=
(Zpr−1)

∗, it implies that

(i) when char(R) = p then Aut(R∗) ∼= Aut(Zpr−1)×Aut(
∏h(Zrp)) ∼= (Zpr−1)

∗×
Aut(

∏h(Zrp)).

(ii) when char(R) = p2, then Aut(R∗) ∼= (Zpr−1)
∗ × Aut(

∏h+1(Zrp)).

Lemma 2.5. Let Char(R) = p, p a prime integer and Bp = 1 + J = (Zrp)r.
Then, | Bp |= prh.
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Proof. If Bp =
∏h

i=1 Z/peiZ such that 1 ≤ e1 ≤ e2 ≤ ... ≤ er, then, it is well
known that | Bp |=|

∏r
i=1 Z/peiZ |= p

∑r
i=1 ei . Now, since e1 = e2 = ... = er = 1

and there are h−tuples of such r factors of er, it follows that (
∑r

i=1 ei)
h = rh.

Thus | Bp |= prh as required.

Remark 2.6. Now, suppose G ∼=
∏h

i B
′
p such that B

′
p = Zp × Zp × ....× Zp︸ ︷︷ ︸

r

over distinct set of primes p then Aut(G) =
∏
Aut(B

′
p).

In the sequel, we determine Aut(I + J) for both the characteristics of R.

3 The Endomorphism Rings of the group 1+J

For a successful characterization of Aut(R∗), it is necessary to first give a
description of Ep, the endomorphism ring of 1 + J . Elements of Ep are
group homomorphisms from 1 + J into itself with ring multiplication given
by composition and addition given naturally by (A + B)(x) := A(x) + B(x)
for A,B ∈ End(1 + J) and x ∈ 1 + J

An element of 1 + J is a column vector (x1, ..., xn)T in which each xi ∈
Z/peiZ and xi ∈ Z is an integral represntative

3.1 Characteristic of R = p, p2

Proposition 3.1. Let R be a finite ring whose additive group (R,+) is of type
(pe1 , pe2 ..., pel) : ei ≥ e2 ≥ .... ≥ el. Then, R can be identified with a subring
of the endomorphism ring say B of the additive group. The ring B can be
considered as the ring of all l × l matrices (aij) such that 1 ≤ i, j ≤ l of the
form.

(ai,j) =


a11 a12 · · · a1l

pe1−e2a21 a22 · · · a2l
...

...
...

...
pe1−e2al1 · · · · · · all


such that

aij =

{
aij, i ≤ j;
pej−eiaij, i > j.

Definition 3.2. Define Rp = {(aij) ∈ Zn×n : pei−ej | aij∀i, j; 1 ≤ j ≤ i ≤ n}
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Example 3.3. Suppose n = 4 and since e1 = 1, e2 = 2, e3 = 3, e4 = 4, then
1 + J = Zp × Zp2 × Zp3 × Zp4

Rp =


a11 a12 a13 a14
pa21 a22 a23 a24
p2a31 pa32 a33 a34
p3a41 p2a42 pa4,3 a44


Thus generally, when 1 + J = Zp × ...× Zp︸ ︷︷ ︸

r

Rp =


a11 a12 · · · a1r
a21 a22 · · · a2r
...

...
...

...
ar1 ar2 · · · arr


Lemma 3.4. Rp forms a ring under matrix multiplication

Proof. Let A = (aij) ∈ Rp. The condition that pei−ej | aij for all i ≥ j is
equivalent to the existence of a decomposition A = PA

′
P−1, in which A

′ ∈
Zn×n and P = diag(pei , ..., pen) is diagonal

Now, if A,B ∈ Rp, then, AB = (PA
′
P−1)(PB

′
P−1) = PA

′
B
′
P−1 ∈ Rp as

required.

Proposition 3.5. Let φi : Z → Z/peiZ be defined by x 7→ xmod pei. Let φ :
Zn → 1+J be a homomorphism given by φ(x1, ..., xn)T = (φ1(x1), ..., φn(xn))T =
(x1, ..., xn)T . Then, Ep is a multiplication by a matrix A ∈ Rp on a vector of
integer representatives followed by an application of φ.

Theorem 3.6. [4] The map ψ : Rp → Ep given by ψ(A)(x1, ..., xn)T =
φ(A(x1, ..., xn)T ) is a surjective ring homomorphism.

Proof. We need to verify that ψ(A) is a well defined map from 1 + J into
itself. Let A = (aij) ∈ Rp and suppose that (x1, ..xn)T = (y1, ..., yn)T for
x, y ∈ Z so that pei | xi − yi, ∀i. The kth vector entry of the difference
φ(A(x1, ..., xn)T )− φ(A(y1, ..., yn)T ) is

φk(
n∑
i=1

akixi)− φk(
n∑
i=1

akiyi) = φk(
n∑
i=1

akixi −
n∑
i=1

akiyi)

n∑
i=1

φk(
aki
pek−ei

(xi − yi)) = 0

since pek | (xi − yi) when k < i Next, since φ and A are both linear, it
follows that ψ(A) is linear. Therefore ψ(A) ∈ End(1 + J) for all A ∈ Rp.
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To prove surjectivity, of ψ, let ωi = (0, ..., gi, ..., 0)T be the vector with gi in
the ith component and zeros everywhere else. An endomorphism say M ∈ Ep
determined by where it sends each ωi, however, there is no complete freedom
in the mapping of these elements.

Now, suppose, M(ωj) = (x1j, ..., xnj)
T = φ(x1j, ..., xnj)

T for xi,j ∈ Z. Then,
0 = M(0) = M(pejωj) = Mωj + ...+Mωj︸ ︷︷ ︸

pej

= (pejx1j, ..., p
ejxnj) . Thus pej |

pejxij ∀i, j and therefore pei−ej | xij when i ≥ j. Forming the matrix B =
(xij) ∈ Rp gives, ψ(B) = M by construction and this proves that ψ is surjective

Finally, we need to prove that ψ is a ring homomorphism. Clearly, from
the definition, ψ(I) = idEp and that ψ(A + B) = ψ(A)ψ(B). If A,B ∈ Rp,
then, a straight forward calculation reveals that ψ(AB) is the endomorphism
composition ψ(A) ◦ ψ(B) by the properties of the matrix multiplication

Remark 3.7. Given this description of Ep = End(1+J), we can, characterize,
those endomorphisms giving rise to elements in Aut(1 + J)

Lemma 3.8. The kernel of ψ is given by the set of matrices A = (aij) ∈ Rp

such that pe
i | aij for all i, j

Proof. Let ωj = (0, ..., gj, ..., 0)T ∈ (1 + J) be the vector with gj in the jth

component and zeros everywhere else. If A = (aij) ∈ Rp has the property that
each aij is divisible by pei , then

ψ(A)ωj = (φ1(aij), ..., φn(anj)) = 0

In particular, since x ∈ 1 + J is a Z−linear combination of ωj, it follows that
φ(A)x = 0,∀x ∈ 1 + J . Thus A ∈ ker(ψ).

Conversely, suppose A = (aij) ∈ ker(ψ) is that ψ(A)ωj = 0,∀ωj. Then,
from the above above calculation, each aij is divisible by pei

Remark 3.9. It is now clear that Ep which is the endomorphism of (1 +J) is
explicitly characterized as a quotient Rp/ker(ψ)

Lemma 3.10. Let A ∈ Zn×n such that det(A) 6= 0. Then, there exists a unique
matrix B ∈ Qn×n called the adjugate of A such that AB = BA = det(A)I and
moreover, B has integer entries.

Theorem 3.11. An endomorphism M = ψ(A) is an automorphism if and
only if A(mod)p ∈ GLn(Fp)

Proof. Fix a matrix A ∈ Rp with det(A) 6= 0. It is well known that an adjugate
of A say B ∈ Zn×n such that AB = BA = det(A)I. We need to show that B
is actually an element of Rp.

Let A = PA
′
P−1 for some A

′ ∈ Zn×n and B
′ ∈ Zn×n be such that A

′
B
′

=
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B
′
A
′
= det(A

′
)I. Notice that det(A) = det(A

′
). Let C = PB

′
P−1 and observe

that
AC = PA

′
B
′
P−1 = det(A)I = PB

′
A
′
P−1 = CA.

By the uniqueness of B, it follows that B = C = PB
′
P−1 and thus, B is in

Rp as desired.
Now, suppose that p - det(A) so that A(mod)p ∈ GLn(Fp) and let λ ∈ Z

be such that λ is inverse of det(A) modulo pei(such an integer exists since
(det(A), pen) = 1). Thus we have, det(A) ·λ ≡ 1(modpej) whenever 1 ≤ j ≤ n.

Let B be the adjugate of A. Define an element of Rp by A(−1) := λ · B,
whose image under ψ is the inverse of the endomorphism represented by A :

ψ(A(−1)A) = ψ(AA(−1) = ψ(λ · det(A)I) = idEp

This proves that ψ(A) ∈ Aut(1+). Conversely, if ψ(A) = M and ψ(C) =
M−1 ∈ Ep exists, then, ψ(AC − I) = ψ(AC) − idEp = 0. Hence, AC − I ∈
ker(ψ).

From the kernel calculation , it follows that p | AC − I entry-wise and
so, AC ≡ Imodp. Thus, 1 ≡ det(AC) ≡ det(A)det(C)modp. In particular,
p - det(A)

Proposition 3.12. Let R be a Square radical zero finite commutative com-
pletely primary ring constructed in the previous section. Let the characteristic
of R be p so that 1 + J = (Zrp)h. Suppose, Bp = Zp × ...× Zp︸ ︷︷ ︸

r

⊆ 1 + J , then

we can construct Rp of Bp such that

Rp = (aij) : pei−ej | aij,∀i, j; 1 ≤ j ≤ i ≤ r =


a11 a12 · · · a1r
a21 a22 · · · a2r
...

...
...

...
ar1 ar2 · · · arr

 = Mr(Zp)

As a result, the following conditions hold:

(i) End(Bp) ∼= ψ(A) : A = (aij) ∈Mr(Zp) and ψ : Mr(Zp)→ End(Bp)

(ii) Aut(Bp) ∈ GLr(Zp)

(iii) | Aut(Bp) |=
∏r−1

i=0 (pr − pi)

Proof. The proof of (i) and (ii) follow from the previous results.
Now, consider Aut(Zp × ...× Zp︸ ︷︷ ︸

r

). We start with Aut(Zp) and Aut(Zp×Zp)

in order to obtain the size of the automorphism group of Bp. In Zp, each
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of the p − 1 nonidentity elements has order p. Suppose Zp =< a >, then
the map a 7→ ai is an element of Aut(Zp) provided i ∈ [1, p − 1]. Thus
| Aut(Zp) |= p− 1 = Φ(p), where Φ is the Eulers’-phi function.

Next, let a and b each generate groups of order p, so that Zp × Zp =<
a >< b >. A homomorphism θ : Zp × Zp 7→ Zp × Zp is an automorphism iff
| θ(a) |=| θ(b) |= p and < θ(a) > intersects with < θ(b) > only at identity.

To find | Zp × Zp |, we must count the pairs (β, β
′
) of elements in Zp × Zp

such that θ(a) = β and θ(b) = β
′

determines an automorphism. Each of the
p2 − 1 nonidentity elements of Zp × Zp has order p , so, a given element of
Aut(Zp × Zp) may map a to any of the p2 − 1 different places.

Let β be nonidentity element. We must count the elements β
′

of Zp × Zp
such that β

′
= p and < β > ∩ < β

′
> {e}. Since each β generates a group of

order p and any of the p2 − p elements of Zp × Zp lying outside of < β > will
generate a group of order p that intersects the group < β > only at identity
element, it follows that

| Aut(Zp × Zp) |= (p2 − 1)(p2 − p)

For Bp = Zp × ...× Zp︸ ︷︷ ︸
r

, let {g1, ..., gr} be a set of generators for Bp, so that

Zp × ...× Zp︸ ︷︷ ︸
r

=< g1 > × < g2 > ×...× < gr > .

Each of the nonidentity elements of Bp has order p. We now count the num-
ber of injective maps from the above generators to nonidentity elements that
generate groups intersecting only at the identity element.

Suppose that an automorphism ofBp sends g1 to some element β inBp, then
there are pr−p elements β

′
such that < β > ∩ < β

′
>. Supposing further that

this automorphism is given by g1 7→ β and g2 7→ β
′

for some β
′

not in < β >,
there remain pr − p2 elements β

′′ ∈ Bp that are outside of < β > × < β
′
>.

Sending g3 to any such β
′′

gives (< β >< β
′
>)∩ < β

′′
>= {e}.

Continuing in this manner, it is easy to specify where an automorphism of
Bp sends the first n generators and then find pr − pn elements in Bp to which
the next generators might be sent. Thus

| Aut(
r∏
i=1

Zp) |=| Aut(B
′

p) |=
r−1∏
i=0

(pr − pi)

Lemma 3.13. Consider R∗ such that Char(R) = p, so that 1+J = Zrp × Zrp × ....× Zrp︸ ︷︷ ︸
h

.

Then
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(i) (Rp) = Mhr(Zp) =



a11 · · · a1r a1(r+1) · · · a1(2r) · · · a1(hr)
a21 · · · a2r a2(r+1) · · · a2(2r) · · · a2(hr)
... · · · ...

...
...

...
...

...
ar1 · · · arr ar(r+1) · · · ar(2r) · · · ar(hr)
... · · · ...

...
...

...
...

...
a(2r)1 · · · a(2r)r a(2r)(r+1) · · · a(2r)(2r) · · · a(2r)(hr)

... · · · ...
...

...
...

...
...

a(hr)1 · · · a(hr)r a(hr)(r+1) · · · a(hr)(2r) · · · a(hr)(hr)


(ii)End(1+J) ∼= ψ(A) : A = (aij) ∈Mrh(Zp) and ψ : Mrh(Zp)→ End(1+J)

(iii) Aut(1 + J) ∈ GLhr(Zp)

Lemma 3.14. Consider R∗ such that Char(R) = p2 so that 1+J = Zrp × Zrp × ....× Zrp︸ ︷︷ ︸
h+1

.

Then

(i) (Rp) = M(h+1)r(Zp) =



a11 · · · a1r a1(r+1) · · · a1(2r) · · · a1((h+1)r)

a21 · · · a2r a2(r+1) · · · a2(2r) · · · a2((h+1)r)
... · · · ...

...
...

...
...

...
ar1 · · · arr ar(r+1) · · · ar(2r) · · · ar((h+1)r)
... · · · ...

...
...

...
...

...
a(2r)1 · · · a(2r)r a(2r)(r+1) · · · a(2r)(2r) · · · a(2r)((h+1)r)

... · · · ...
...

...
...

...
...

a((h+1)r)1 · · · a(hr)r a(hr)(r+1) · · · a(hr)(2r) · · · a((h+1)r)((h+1)r)


(ii)End(1 + J) ∼= ψ(A) : A = (aij) ∈ Mr(h+1)(Zp) and ψ : Mr(h+1)(Zp) →

End(1 + J)

(iii) Aut(1 + J) ∈ GL(h+1)r(Zp)

4 Counting the Automorphisms of 1 + J for

both characteristics of R

4.1 For the characteristic of R = p

Since Aut(1 + J) ∈ GLhr(Zp), we need to find all the elements of GLhr(Zp)
that can be extended to a matrix in End(1 + J) and calculate the distinct
ways of extending such an element to an endomorphism. So, we need all such
matrices Mhr ∈ End(1 + J) that are invertible modulo p
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Now, recall that 1 + J = (Zrp)h and define the following numbers:

αk = max{m : em = ek}, βk = min{m : em = ek}

Since em = ek for m = k, we have the two inequalities αk ≥ k and βk ≤ k
Note that β1 = β2 = ... = βα1 and βα1+1 = ... = βαα1+1 , and so on. So we

have
β1 = · · · = βα1 < βα1+1 < βαα1+1 = · · ·

Since e1 = e2 = · · · = en = ehr = 1, it follows that n = hr and αk coincides
with βk across all the values of i

Suppose the ei are different, we can introduce the numbers e
′
i, Ci, Di as

follows. Define the set of distinct numbers {e′i} such that {e′i} = {ej} and
e
′
1 < e

′
2 < · · ·

Let l ∈ N be the size of {e′i}. So, e
′
1 = e1, e

′
2 = eα1+1, · · · , e

′

l = en. Now
define

Di = max{m : em = e
′

i}, Ci = min{m : em = e
′

i : {e′i}

Note that C1 = 1, and Dl = n. Also, define Cl+1 = n+ 1
Now, for both of the considerations, the number of matrices say A ∈ Rp

that are invertible modulo p are upper block triangular matrices which may
be expressed in the following three forms

A =



m11 ∗
...

mD11 · · · mD1D1

mC2C2

...
mD2C2 · · · mD2D2

. . .

mC1C1

...
0 mDlCl · · · mDlCl


or

A =



m11 m12 · · · m1(hr)
...

mα11

mα22

. . .

0 mα(hr)hr


=


m1β1

m2β2
. . .

0 m(hr)β(hr) · · · m(hr)(hr)
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The number of such A is
∏hr

k=1(p
αk−pk−1) since we require linearly independent

columns. So, the first step of calculating | Aut(1 + J) | is done.
Next, we count the number of extensions of A to Aut(1+J). To extend each

entry mij from mij ∈ Z/pZ to aij ∈ pei−ejZ/peiZ if ei > ej, or aij ∈ Z/peiZ if
ei = ej, such that aij ≡ mij(mod)p, we have pej ways to do so for the necessary
zeros (that is , when ei > ej) as any element of pei−ejZ/peiZ works.

Similarly, there are pei − 1 ways for the not necessarily zero entries (that
is , when ei ≤ ej) as any element of pZ/peiZ will do.

4.2 For the characteristic of R = p2

This holds by induction from the previous consideration. Thus we have the
following results:

Lemma 4.1. The R be the a finite ring of the class of rings considered in the
construction (∗) and R∗ be its group of units. The following two conditions
hold for both of the characteristics of R

(i)When charR = p, the abelian group 1 + J = (Zrp)h has

| Aut(1 + J) |=
hr∏
k=1

(pαk − pk−1)
hr∏
j=1

(pej)hr−αj
hr∏
i=1

(pei−1)hr−βi+1

(ii)When charR = p2, the abelian group 1 + J = (Zrp)h+1 has

| Aut(1 + J) |=
(h+1)r∏
k=1

(pαk − pk−1)

(h+1)r∏
j=1

(pej)hr−αj
(h+1)r∏
i=1

(pei−1)(h+1)r−βi+1

Theorem 4.2. Let R∗ be the unit group of a class of finite rings described by
construction (∗). Then

(i) When Char(R) = p, Aut(R∗) = Aut(Zpr − 1)× Aut(1 + J)

| Aut(R∗) |=| Z∗
pr − 1 | × | Aut(Bp) |

= Φ(pr − 1) ·
hr∏
k=1

(pαk − pk−1)
hr∏
j=1

(pej)hr−αj
hr∏
i=1

(pei−1)hr−βi+1

(ii) When Char(R) = p2, then

| Aut(R∗) |= Φ(pr−1)·
(h+1)r∏
k=1

(pαk−pk−1)

(h+1)r∏
j=1

(pej)hr−αj
(h+1)r∏
i=1

(pei−1)(h+1)r−βi+1
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