• Login
    View Item 
    •   MMUST Institutional Repository
    • University Journals/ Articles
    • Gold Collection
    • View Item
    •   MMUST Institutional Repository
    • University Journals/ Articles
    • Gold Collection
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adsorption of Caffeine and Ciprofloxacin onto Pyrolitically Derived Water Hyacinth Biochar: Isothermal, Kinetic and Thermodynamic Studies.

    Thumbnail
    View/Open
    Adsorption of Caffeine and Ciprofloxacin onto Pyrolitically Derived Water Hyacinth Biochar.pdf (288.2Kb)
    Date
    2016-09
    Author
    Ngeno, Emily Chelangat
    Orata, Francis
    Baraza, Danstone Lilechi
    Shikuku, Victor
    Kimosop, Selly
    Metadata
    Show full item record
    Abstract
    Adsorption of Caffeine and Ciprofloxacin onto Pyrolitically Derived Water Hyacinth Biochar: Isothermal, Kinetic and Thermodynamic Studies Full-Text PDFDownload XML 10 Views DOI:10.17265/1934-7375/2016.04.006 Author(s) Emily Chelangat Ngeno, Francis Orata1, Lilechi Danstone Baraza, Victor Odhiambo Shikuku and Selly Jemutai Kimosop Affiliation(s) ABSTRACT In this work, the adsorptive features of water hyacinth (Eichhornia crassipes) derived biochar for sequestration of ciprofloxacin and caffeine from aqueous solution is reported. The isothermal behaviour, adsorption kinetics, mechanisms and thermodynamic parameters were investigated in batch mode. Langmuir and Freundlich models described the equilibrium adsorption data with regression values > 0.9. The kineticsdata obeyed the pseudo-second-order kinetic law while intraparticle pore diffusion was not the only rate controlling step. The computed thermodynamic parameters, namely change in Gibbs free energy (ΔG), change in enthalpy (ΔH) and change in entropy (ΔS) indicated that the adsorption processes were spontaneous and exothermic with less randomness. pH dependence studies depicted multi-mechanistic adsorption for both compounds and is hypothesized to involve hydrophobic interactions besides other non-coulombic interactions. The findings demonstrate that water hyacinth biochar presents an excellent low cost and environmentally benign adsorbent for mitigation of pharmaceuticals from water with a removal efficiency of above 60 % for caffeine and ciprofloxacin. KEYWORDS Adsorption, ciprofloxacin, caffeine, biochar, water hyacinth.
    URI
    https://doi.org/10.17265/1934-7375/2016.04.006
    http://www.davidpublisher.org/index.php/Home/Article/index?id=27718.html
    http://ir-library.mmust.ac.ke/123456789/1637
    Collections
    • Gold Collection [969]

    MMUST Library copyright © 2011-2022  MMUST Open Access Policy
    Contact Us | Send Feedback
     

     

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MMUST Library copyright © 2011-2022  MMUST Open Access Policy
    Contact Us | Send Feedback