• Login
    View Item 
    •   MMUST Institutional Repository
    • University Journals/ Articles
    • Gold Collection
    • View Item
    •   MMUST Institutional Repository
    • University Journals/ Articles
    • Gold Collection
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Agrobacterium-Mediated Transformation of Selected Kenyan Maize (Zea mays L.) Genotypes by Introgression of Nicotiana Protein Kinase (npk1) to Enhance Drought Tolerance

    Thumbnail
    View/Open
    Agrobacterium-Mediated Transformation of Selected Kenyan Maize (Zea mays L.) Genotypes by Introgression of Nicotiana Protein Kinase (npk1) to Enhance Drought Tolerance.pdf (290.5Kb)
    Date
    2014-03
    Author
    Muoma, John Vincent Omondi
    Ombori, Omwoyo
    Metadata
    Show full item record
    Abstract
    Currently maize production in the East and Central Africa (ECA) region is at 1.3 tonnes per hectare compared to the potential of up to 7.0 tonnes per hectare because of biotic and abiotic constraints, and this has resulted in prevalence of famine in sub-Saharan Africa. Drought is the most important abiotic stress affecting productivity of maize in Sub Saharan Africa leading to up to 70% crop loss and in certain cases total crop loss. Previous work has shown that Mitogenic Activated Protein Kinase (MAPKKK) gene activated an oxidative signal cascade, which led to tolerance to adverse condition. To analyze the role of the oxidative signal cascades on tropical maize, 4 transgenic tropical maize plants were developed through an Agrobacterium-mediated transformation with a MAPKKK homology from tobacco Nicotiana Protein Kinase 1 (npk1) and the insert was confirmed using Southern and Northern blot hybridization analysis. Fertile To maize plants were obtained which were planted to generate T1 plants, which were used for comparison with non-transgenic plants. The T1 plantlets of tropical inbred TL08-(2)4, single hybrid cross of a PTL001, a multiple cross hybrid DH01 and a dry land cultivar DLC1 genotypes were planted in the greenhouse and assessed for morphological and physiological changes associated with increase in drought stress tolerance when under water stress condition. The results showed that npk1 effectively enhanced drought tolerance in TL08-(2)4 and PTL001, and there was no significant morphological difference between transgenic controls (well watered) and transgenic tests (subjected to moderate drought stress). Overall, there were between 20%-35% enhancements of yield of the transgenic stressed events compared with non-transgenic stressed control.
    URI
    https://doi.org/10.4236/AJPS.2014.56100
    https://www.scirp.org/journal/paperinformation.aspx?paperid=44120
    http://ir-library.mmust.ac.ke/123456789/1666
    Collections
    • Gold Collection [350]

    MMUST Library copyright © 2011-2022  MMUST Open Access Policy
    Contact Us | Send Feedback
     

     

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MMUST Library copyright © 2011-2022  MMUST Open Access Policy
    Contact Us | Send Feedback