• Login
    View Item 
    •   MMUST Institutional Repository
    • University Journals/ Articles
    • Gold Collection
    • View Item
    •   MMUST Institutional Repository
    • University Journals/ Articles
    • Gold Collection
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Antiplasmodial, Cytotoxicity and Phytochemical Constituents of Four Maytenus Species Used in Traditional Medicine in Kenya

    Thumbnail
    View/Open
    Antiplasmodial, Cytotoxicity and Phytochemical Constituents of Four Maytenus Species Used in Traditional Medicine in Kenya.pdf (314.2Kb)
    Date
    2017-01-05
    Author
    Muthaura, N.
    Mutai, Charles
    Joseph, Keriko
    M, Charles
    Abiy, Yenesew
    Matthias, Heydenreich
    Yoseph;, Atilaw
    Gathirwa, W.
    Jeremiah, N
    Irungu, Beatrice
    Derese, Solomon
    Metadata
    Show full item record
    Abstract
    Background: In Kenya, several species of the genus Maytenus are used in traditional medicine to treat many diseases including malaria. In this study, phytochemical constituents and extracts of Maytenus undata, M. putterlickioides, M. senegalensis and M. heterophylla were evaluated to determine compound/s responsible for antimalarial activity. Objective: To isolate antiplasmodial compounds from these plant species which could be used marker compounds in the standardization of their extracts as a phytomedicine for malaria. Methods: Constituents were isolated through activity-guided fractionation of the MeOH/CHCl3 (1:1) extracts and in vitro inhibition of Plasmodium falciparum. Cytotoxicity was evaluated using Vero cells and the compounds were elucidated on the basis of NMR spectroscopy. Results: Fractionation of the extracts resulted in the isolation of ten known compounds. Compound 1 showed promising antiplasmodial activity with IC50, 3.63 and 3.95 ng/ml against chloroquine sensitive (D6) and resistant (W2) P. falciparum, respectively and moderate cytotoxicity (CC50, 37.5 ng/ml) against Vero E6 cells. The other compounds showed weak antiplasmodial (IC50 >1.93 μg/ml) and cytotoxic (CC50 > 39.52 μ g/ml) activities against P. falciparum and Vero E6 cells, respectively. Conclusion: (20α)-3-hydroxy-2-oxo-24-nor-friedela-1(10),3,5,7-tetraen-carboxylic acid-(29)-methylester (pristimerin) (1) was the most active marker and lead compound that warrants further investigation as a template for the development of new antimalarial drugs. Pristimerin is reported for the first time in M. putterlickioides. 3-Hydroxyolean-12-en-28-oic acid (oleanolic acid) (5), stigmast-5-en-3-ol (β-sitosterol) (6), 3-oxo-28-friedelanoic acid (7), olean-12-en-3-ol (β-amyrin) (8), lup-20(29)-en-3-ol (lupeol) (9) and lup-20(29)-en-3-one (lupenone) (10) are reported for the first time in M. undata.
    URI
    https://www.ingentaconnect.com/content/ben/npj/2017/00000007/00000002/art00010
    https://doi.org/10.2174/2210315507666161206144050
    http://ir-library.mmust.ac.ke:8080/xmlui/handle/123456789/2671
    Collections
    • Gold Collection [969]

    MMUST Library copyright © 2011-2022  MMUST Open Access Policy
    Contact Us | Send Feedback
     

     

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MMUST Library copyright © 2011-2022  MMUST Open Access Policy
    Contact Us | Send Feedback