• Login
    View Item 
    •   MMUST Institutional Repository
    • University Journals/ Articles
    • Gold Collection
    • View Item
    •   MMUST Institutional Repository
    • University Journals/ Articles
    • Gold Collection
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Response surface methodology directed modeling of the biosorption of progesterone onto acid activated Moringa oleifera seed biomass: Parameters and mechanisms

    Thumbnail
    View/Open
    Response surface methodology directed modeling of the biosorption of progesterone onto acid activated.pdf (416.3Kb)
    Date
    2024-05-27
    Author
    Emily, Ngeno
    Roselyn, Ongulu
    Victor, Shikuku
    Ssentongo, Deo
    Otieno, Benton
    Ssebugere, Patrick
    Orata, Francis
    Metadata
    Show full item record
    Abstract
    In this study, chemically activated fat-free powdered Moringa oleifera seed biomass (MOSB) was synthesized, characterized, and utilized as a cost-effective biosorbent for the abstraction of progesterone (PGT) hormone from synthetic wastewater. Natural PGT is a human steroid hormone from the progestogen family. Synthetic PGT is approved for the regulation of the menstrual cycle, aiding contraception, and is administered as a hormone replacement therapy in menopausal and post-menopausal women. PGT is an endocrine disrupting chemical (EDC) with negative health impacts on biota. The X-ray diffractogram (XRD), Scanning electron microscopy-Energy-dispersive X-ray spectroscopy (SEM-EDS), and Brunauer–Emmet–Teller (BET) analyses displayed a porous, amorphous biosorbent with an elemental composition of 72.5% carbon and 22.5% oxygen and a specific surface area of 210.0 m2 g−1. The process variables including temperature (298–338 K), pH (2–10), contact time (10–180 min), adsorbate concentration (20–500 μg L−1), and adsorbent dosage (0.1–2.0 g) were optimized using response surface methodology (RSM) to obtain the greatest efficacy of MOSB during biosorption of PGT. The optimum parameters for PGT biosorption onto MOSB were: 86.8 min, 500 μg L−1 adsorbate concentration, 298 K, and 0.1 g adsorbent dosage. PGT removal from aqueous solutions was pH-independent. The Langmuir isotherm best fitted the equilibrium data with maximal monolayer biosorption capacity of 135.8 μg g−1. The biosorption rate followed the pseudo-first-order (PFO) kinetic law. The thermodynamic functions (ΔG < 0, ΔH = −9.258 kJ mol−1 and ΔS = +44.16 J mol−1) confirmed that the biosorption of PGT onto MOSB is a spontaneous and exothermic process with increased randomness at the adsorbent surface. The biosorption mechanism was physisorption and was devoid of electrostatic interactions. The findings from this study indicate that MOSB is an inexpensive, low-carbon, and environmentally friendly biosorbent that can effectively scavenge PGT from aqueous solutions.
    URI
    https://doi.org/10.1016/j.chemosphere.2024.142457
    https://www.sciencedirect.com/science/article/abs/pii/S004565352401350X
    http://ir-library.mmust.ac.ke:8080/xmlui/handle/123456789/2845
    Collections
    • Gold Collection [989]

    MMUST Library copyright © 2011-2022  MMUST Open Access Policy
    Contact Us | Send Feedback
     

     

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MMUST Library copyright © 2011-2022  MMUST Open Access Policy
    Contact Us | Send Feedback